

caBIG

# caBIOperl Tutorial

- National Cancer Institute Center for Bioinformatics
- ▶ Gene Levinson, Ph.D., Contractor, Terrapin Systems



#### **Goals and Objectives**

#### In this tutorial, we will show you:

- what caBIOperl can do for your clinical/research program.
- how caBIOperl fits into caCORE.
- how to get started with caBIOperl.
- how relational database tables are accessed with perl.
- how to solve real research problems.





#### **Contributors**

- Shan Jiang
- Sue Dubman
- Peter Covitz
- Ying Long
- Himanso Sahni
- Carl Schaefer
- caBIO Team, SAIC
- Systems and App Support Teams, Terrapin Systems
- General Contractor, Booz-Allen Hamilton
- NCI Center for Bioinformatics
- caBIO community





#### **Gene Levinson**

- ▶ 15 years experience-- basic and clinical lab research.
- ▶ Ph.D. in Molecular Genetics from U.C. Irvine.
- Software dev., Technical training, IT experience
- Bioinformatics Application Scientist, Terrapin Systems— Contractor to NCICB.

Please, tell us what you would like to cover today!









# Please- ask questions!!















# caBIO: Rests on top of controlled vocabulary & standardized data elements

#### caBIO

Cancer Biology
Infrastructure Objects

#### caDSR

**Cancer Data Standards Repository** 

#### **EVS**

**Enterprise Vocabulary Services** 





#### **Enterprise Vocabulary Services**

- http://ncicb.nci.nih.gov/core/EVS
- NCI thesaurus: Neoplasms, Drugs, Anatomy, Genes, Proteins, Techniques and administrative terminology, others
- Addresses need for a common vocabulary



#### **Cancer Data Standards Repository**

- metadata define data elements used in research studies
- metadata define questions being asked, and range of permissible answers.
- required for interpretation and computer processing of scientific data



cancer Biomedical Informatics Grid



# caBIO Architecture



#### Access to Java elements for Perl programmers:







# SOAP wrapper and XML access to caBIO via perl







#### Perl for Web Services can be a chore.







#### Native way to access caBIO via caBIOperl API



#### caBlOperl makes it easier to focus on investigator queries

gene object instantiated; getPathways method calledqueries the database, returns pathway name fields

@pathways = \$gene ->getPathways();

#### **Retrieving pathways:**

Found caBIO Gene BRCA1

Found 5 associated Pathways

Name: h\_atmPathway

Name: h\_atrbrcaPathway

Name: h\_bard1Pathway

Name: h\_carm-erPathway

Name: h\_g2Pathway







# caBIOperI wraps lower-level SOAP API-- shields developers from SOAP calls and XML parsing.







#### What can caBIOperl do for you?

- Use native perl code to access caBIO objects in an object-oriented fashion;
- Query a broad range of relational databases, using perl rather than SQL;
- Query large, remote databases including genes, pathways, clinical trials, etc;
- Navigate between objects, using perl code.





# Getting Started: Set up perl

To see if Perl is present and accessible, type perl –version on command line.

Perl should be in your path.

Solaris/SunOS:

Binary at <u>www.sunfreeware.com</u>

Linux: probably already in package

If not, can get RPM at Linux-specific site, or at

www.perl.org;

Windows: ActivePerl:

http://www.activestate.com/Products/ActivePerl/





#### **Getting Started: Perl Modules**

- Update your Perl installation with XML-DOM and SOAP-LITE:
  - Windows: at command prompt:
    - Type ppm, <ENTER>
    - Type search dom <ENTER>
    - Type install (number of XML-DOM entry) <ENTER>
    - Do the same search for SOAP; install SOAP-Lite.





# **Getting Started: Perl Modules**

- Update your Perl installation with XML-DOM and SOAP-LITE:
  - Unix: at command prompt: universal method, any UNIX platform— at command prompt:

perl -MCPAN -e shell

Refer to the CPAN documentation for more details on how to use this command— at <a href="http://www.perldoc.com/perl5.6/lib/CPAN.html">http://www.perldoc.com/perl5.6/lib/CPAN.html</a>





#### Getting started: caBlOperl download

- http://ncicb.nci.nih.gov/download/index.jsp
- Unzip the package:
  - bin config scripts
  - doc- documentation
  - examples
  - src
    - gov/nih/nci/caBIO/bean: Perl modules
    - t: perl test scripts for particular objects





#### **Getting started: environment setup**

- Suppose you unzipped the package to directory C:\caBIOperl. There are two ways to set up your environment in order to access the caBIOperl package:
  - Create or modify your environment variable PERL5LIB to include C:\caBIOperl\src.
    - Windows: Control Panel -> Systems -> Advanced; create/edit an environment variable PERL5LIB.
  - Modify the Perl environment variable @INC to include C:\caBIOperl\src





# Getting started: caBlOperl config

 The standard distribution of the caBIOperl points to the caBIO server at cabio.nci.nih.gov, port 80. If you want to change them to point to your own designated location, you can run the setServer.pl and setPort.pl script in the caBlOperl\bin folder.

#### Example:

- C:\caBIOperl\bin>setServer.pl my\_cabio\_server.my\_company.com
- C:\caBIOperl\bin>setPort.pl 8080





#### caBIOperI API Documentation

- Documentation in HTML
- Readme describes setup and configuration
- Key aspects related to each of the objects are shown in the index:
  - Synopsis: minimal example of perl code to use that object
  - Object creation, attributes, associated methods described.
  - Associations indicate types of queries that can be imagined.
  - Other information such as author, license.





#### caBIOperI Documentation

Agent Anomaly

1

Chromosome

ClinicalTrialProtocal

Clone

CMAPOntology

CMAPOntologyRelationship

Disease

ExpressionFeature

**ExpressionMeasurement** 

ExpressionMeasurementArray

Gene

Gene Alias

GeneHomolog

GoOntology

GoOntologyRelationship

Histopathology

Library

MapLocation

Organ

**Organ**Relationship

Pathway

Protein

ProteinHomolog

Protocol

**ProtocolAssociation** 

Sequence

SNP

Target

Taxon

Tissue

Vocabulary

- Object creation and retrieval methods
- o Attributes and related methods
- o Associations and related methods
- o EXPORT
- SEE ALSO
- AUTHOR
- COPYRIGHT AND LICENSE

#### NAME

```
gov::nih::nci::caBIO::bean::Agent - Perl extension for Agent.
```

#### **SYNOPSIS**

```
use gov::nih::nci::caBIO::bean::Agent;
use gov::nih::nci::caBIO::bean::AgentSearchCriteria;

# create a AgentSearchCriteria instance to specify search elements
my $search = new gov::nih::nci::caBIO::bean::AgentSearchCriteria;
# specify a search element
$search->setId(1080);
# create a dummy bean instance to invoke its search methods
my $bean = new gov::nih::nci::caBIO::bean::Agent;
# return all beans that meets the search element
my *beanlist = $bean->searchAgent($search);
...
```







# Please- ask questions!!















#### Some examples of code, using the caBIOperl API



# Gene symbols: used to search for pathways & taxons

```
#! /usr/local/bin/perl
# Map gene symbols to pathways using the caBioperl API.
use strict :
use warnings ;
use gov::nih::nci::caBIO::bean::Gene ;
use gov::nih::nci::caBIO::bean::GeneSearchCriteria ;
my (@symbols,$taxonID,$sym,$faux,$search,$result,@genes,$gene,$taxon,@pathways,$pw) ;
# Search parameters
@symbols = qw(BRCA1 TP53) ;
$taxonID = 5 :
foreach $sym (@symbols) {
  print "\nRetrieving pathways for gene '$sym'...\n" ;
  $faux = new gov::nih::nci::caBIO::bean::Gene() ;
  $search = new gov::nih::nci::caBIO::bean::GeneSearchCriteria() ;
                                                       Search object is
  $search->setName($sym) ;
  if ( $result = $faux->search($search) ) {
                                                        instantiated:
    @genes = $result->getResultSet() ;
    foreach $gene (@genes) {
      printf " Found caBIO Gene %s\n", $gene->getName();
```





#### Gene symbols to pathways cont.

```
$taxon = $gene->getTaxon() ;
                                                   Taxon attribute is
      if ($taxon) {
        printf " Found associated Taxon: %s\n", retrieved with getTaxon
$taxon->getScientificName() ;
        next unless $taxonID == $taxon->getId(); method;
      } else {
        printf "[WARNING] No associated Taxon found!\n",
$gene->getName() ;
                                                   Pathways attribute
        next ;
                                                   retrieved with
      @pathways = $gene->getPathways() ;
                                                   getPathways method;
      if (@pathways) {
        printf " Found %d associated Pathway(s):\n", scalar(@pathways);
        foreach $pw (@pathways) {
                      Description: %s\n", $pw->getDisplayValue() ;
          printf "
$pw->getPathwayDescription() ;
          printf "
                      SVG: %s\n", $pw->getName() ;
      } else {
        print " No associated Pathways found. \n" ;
  } else {
   print "[WARNING] No caBIO Gene found!\n" ;
```





# Gene symbols to pathways: BRCA1 output

```
Retrieving pathways for gene 'BRCA1'...
  Found caBIO Gene BRCA1
  Found associated Taxon: Homo sapiens
  Found 5 associated Pathway(s):
    Description: ATM Signaling Pathway
   SUG: h_atmPathway
    Description: Role of BRCA1, BRCA2 and ATR in Cancer Susceptibility
   SUG: h_atrbrcaPathway
    Description: BRCA1-dependent Ub-ligase activity
   SUG: h_bard1Pathway
    Description: CARM1 and Regulation of the Estrogen Receptor
   SUG: h_carm-erPathway
    Description: Cell Cycle: G2/M Checkpoint
   SUG: h_g2Pathway
  Found caBIO Gene Brca1
  Found associated Taxon: Mus musculus
```





#### Gene symbols to pathways: TP53 output

```
Retrieving pathways for gene 'TP53'...
 Found caBIO Gene TP53
  Found associated Taxon: Homo sapiens
 Found 18 associated Pathway(s):
    Description: Estrogen-responsive protein Efp controls cell
            cycle and breast tumors growth
    SUG: h_EfpPathway
    Description: Tumor Suppressor Arf Inhibits Ribosomal Biogenesis
    SUG: h_arfPathway
    Description: ATM Signality Pathway
    SUG: h_atmPathway
    Description: Role of BRCA1. BRCA2 and ATR in Cancer Susceptibility
    SUG: h_atrbrcaPathway
    Description: BTG family proteins and cell cycle regulation
    SUG: h_btg2Pathway
    Description: Apoptotic Signaling in Response to DNA Damage
    SUG: h_chemicalPathway
    Description: CTCF: First Multivalent Nuclear Factor
    SUG: h_ctcfPathway
    Description: Cell Cycle: G1/S Check Point
    SUG: h_g1Pathway
    Description: Cell Cycle: G2/M Checkpoint
    SUG: h_g2Pathway
   Description: p53 Signaling Pathway
SVG: h_p53Pathway
    Description: Hypoxia and p53 in the Cardiovascular system
    SUG: h_p53hypoxiaPathway
    Description: Regulation of cell cycle progression by P1k3
    SUG: h_plk3Pathway
    Description: Regulation of transcriptional activity by PML
   SUG: h_pmlPathway
   Description: RB Tumor Suppressor/Checkpoint Signaling in
            response to DNA damage
    SUG: h_rbPathway
    Description: Double Stranded RNA Induced Gene Expression
    SUG: h_rnaPathway
    Description: Telomeres, Telomerase, Cellular Aging, and Immortality
    SUG: h_telPathway
    Description: Overview of telomerase protein component gene
            hTert Transcriptional Regulation
    SUG: h tertpathway
    Description: Chaperones modulate interferon Signaling Pathway
    SUG: h_tidPathway
```





# **Several attribute searches using subroutines: gene = ATM**

```
use rgov::nih::nci::caBIO::bean::GeneSearchCriteria;
print "\nTest gov::nih::nci::caBIO::bean::Gene\n";
# main
## begin list test routines ##
my $USAGE =
"\nUsage:\n\nseveralGeneSearches.pl <gene symbol> (e.g. ATM) \n";
my $argc=@ARGV;
# one argument (gene symbol) is mandatory
if ($argc < 1)
    die $USAGE;
else
    $symbol = shift @ARGV;
if (getGenes() != 0 ) {print "\nFailed!\n";}
if (getGoOntologys() ) { print "\nFailed\n";}
if (getSNPs() ) { print "\nFailed\n";}
if (getMapLocations() ) { print "\nFailed\n";}
if (getProteins() ) { print "\nFailed\n";}
if (getGeneHomologs() ) { print "\nFailed\n";}
if (getGeneAliases() ) { print "\nFailed\n";}
print "\nTest complete\n";
exit 0;
```





#### **ATM**: getGenes subroutine

```
## begin search by attribute methods ##
# test search method
sub getGenes {
  # create an instance
  my $bean = new gov::nih::nci::caBIO::bean::Gene;
  # create a search criterion
  my $search = new gov::nih::nci::caBIO::bean::GeneSearchCriteria;
  $search->setName($symbol); 1. Set the symbol with which to search
  print "\n**** Test search ****\n";
  # process result
  print "\n".$result->toString."\n\n";
  my @rs = $result->getResultSet; 2. Define an array to receive the result set
  my $bean2;
  foreach $bean2 (@rs) { -3. Set up a search object that uses that result set
     print "Name = ".$bean2->getName."\n";
     print "Title = ".$bean2->getTitle."\n";
     print "LocusLinkId = ".$bean2->getLocusLinkId."\n";
     print "ClusterId = ".$bean2->getClusterId."\n\n";
  print "\nSucceed\n"; 4. Call each attribute to search for as a method
  return 0;
```





# ATM: getGenes subroutine: retrieved name, title, locus link ID, cluster ID

```
Test gov::nih::nci::caBIO::bean::Gene
**** Test search ****
SearchResult common attributes:
                                hasMore=false num. of obj=2
startsAt=0 endsAt=2
Name = ATM
Title = ataxia telangiectasia mutated (includes complementation
            groups A. C and D)
LocusLinkId = 472
ClusterId = 526394
Name = Atm
Title = ataxia telangiectasia mutated homolog (human)
LocusLinkId = 11920
ClusterId = 5088
Succeed
```





# **ATM**: getGoOntologys subroutine

```
# test getGoOntologys method
sub getGoOntologys {
   # create an instance
  my $bean = new gov::nih::nci::caBIO::bean::Gene;
  print"\n**** Test getGoOntologys ****\n";
   $bean->setName($symbol);
  my @beans = $bean->getGoOntologys;
  if (@beans ) {
      print "\nGot a total of ".($#beans+1)." GoOntologys.\n\n";
     my $bn;
      foreach $bn (@beans) {
         print "MouseGenesCount = " . $bn->getMouseGenesCount . "\n";
         print "HomoSapienGenesCount = " . $bn->getHomoSapienGenesCount . "\n";
         print "Name = " . $bn->getName . "\n\n";
   } else {
      print "\nFound no GoOntologys.\n";
  print "\nSucceed\n";
  return 0:
```





# **ATM**: getGoOntologys subroutine:

```
*** Test getGoOntologys ****
Got a total of 15 GoOntologys.
MouseGenesCount = 98
HomoSapienGenesCount = 219
Name = regulation of cell cycle
MouseGenesCount = 1281
HomoSapienGenesCount = 1623
Name = DNA binding
MouseGenesCount = 15
HomoSapienGenesCount = 22
Name = inositol/phosphatidylinositol kinase activity
MouseGenesCount = 457
HomoSapienGenesCount = 485
Name = protein kinase activity
MouseGenesCount = 331
HomoSapienGenesCount = 365
Name = protein serine/threonine kinase activity
MouseGenesCount = 2424
HomoSapienGenesCount = 2948
Name = nucleus
MouseGenesCount = 97
HomoSapienGenesCount = 156
Name = DNA repair
MouseGenesCount = 15
HomoSapienGenesCount = 25
Name = response to DNA damage stimulus
```





#### **ATM**: getSNPs subroutine

```
# test getSNPs method
sub getSNPs {
   # create an instance
   my $bean = new gov::nih::nci::caBIO::bean::Gene;
   print"\n**** Test getSNPs ****\n";
   $bean->setName($symbol);
   my @beans = $bean->getSNPs;
   if (@beans ) {
      print "\nGot a total of ".($#beans+1)." SNPs.\n";
     my $bn;
      foreach $bn (@beans) {
         print "Base1 = " . $bn->getBase1 . "\n";
         print "Base2 = " . $bn->getBase2 . "\n";
         print "Offset = " . $bn->getOffset . "\n";
         print "Score = " . $bn->getScore . "\n\n";
   } else {
      print "\nFound no SNPs.\n";
   print "\nSucceed\n";
   return 0:
```





## **ATM**: getSNPs subroutine

```
**** Test getSNPs ****
Got a total of 3 SNPs.
Base1 = G
Base2 = T
Offset = 13020
Score = 1
Base1 = C
Base2 = T
Offset = 12670
Score = 0
Base1 = G
Base2 = A
Offset = 13032
Score = 0
Succeed
```





### **ATM**: getMapLocations subroutine

```
# test getMapLocations method
sub getMapLocations {
   # create an instance
  my $bean = new gov::nih::nci::caBIO::bean::Gene;
   print"\n**** Test getMapLocations ****\n";
   $bean->setName($symbol);
  my @beans = $bean->getMapLocations;
   if (@beans ) {
      print "\nGot a total of ".($#beans+1)." MapLocations.\n\n";
     my $bn;
      foreach $bn (@beans) {
         print "Location = " . $bn->getLocation . "\n";
         print "Type = " . $bn->getType . "\n\n";
   } else {
     print "\nFound no MapLocations.\n";
   print "\nSucceed\n";
  return 0;
```





### **ATM**: getProteins subroutine

```
# test getProteins method
sub getProteins {
   # create an instance
  my $bean = new gov::nih::nci::caBIO::bean::Gene;
  print"\n**** Test getProteins ****\n";
   $bean->setName($symbol);
  my @beans = $bean->getProteins;
  if (@beans ) {
     print "\nGot a total of ". ($ #beans+1)." Proteins. \n";
     my $bn;
      foreach $bn (@beans) {
         print "ProteinInfoId = " . $bn->getProteinInfoId . "\n";
         print "GeneInfoId = " . $bn->getGeneInfoId . "\n\n";
   } else {
     print "\nFound no Proteins.\n";
  print "\nSucceed\n";
  return 0:
```





## ATM: getMapLocations and getProteins subroutines

```
**** Test getMapLocations ****
Got a total of 1 MapLocations.
Location = 11q22-q23
Type = C
Succeed
**** Test getProteins ****
Got a total of 2 Proteins.
ProteinInfoId = 13878337
GeneInfoId = sp:Q13315
ProteinInfoId = 13878338
GeneInfold = sp:Q62388
Succeed
```





## **ATM**: getGeneHomologs subroutine

```
# test getGeneHomologs method
sub getGeneHomologs {
   # create an instance
   my $bean = new gov::nih::nci::caBIO::bean::Gene;
   print"\n**** Test getGeneHomologs ****\n";
   $bean->setName($symbol);
   my \(^{\text{\text{0}}}\) beans = \(^{\text{bean->getGeneHomologs}};
   if (@beans ) {
      print "\nGot a total of ".($#beans+1)." GeneHomologs.\n";
      my $bn;
      foreach $bn (@beans) {
         print "SimilarityPercentage = " . $bn->getSimilarityPercentage . "\t";
   } else {
      print "\nFound no GeneHomologs.\n";
   print "\nSucceed\n";
   return 0;
```





## **ATM**: getGeneHomologs subroutine

```
**** Test getGeneHomologs ****

Got a total of 2 GeneHomologs.

SimilarityPercentage = 84.31 SimilarityPercentage = 84.31

Sunceed
```





### **ATM**: getAliases subroutine

```
# test getGeneAliases method
sub getGeneAliases {
   # create an instance
  my $bean = new gov::nih::nci::caBIO::bean::Gene;
   print"\n**** Test getGeneAliases ****\n";
   $bean->setName($symbol);
  my @beans = $bean->getGeneAliases;
   if (@beans ) {
      print "\nGot a total of ".($#beans+1)." GeneAliases.\n";
     my $bn;
      foreach $bn (@beans) {
         print "Type = " . $bn->getType . "\n";
         print "Description = " . $bn->getDescription . "\n";
         print "Name = " . $bn->getName . "\n\n";
   } else {
     print "\nFound no GeneAliases.\n";
  print "\nSucceed\n";
  return 0;
```





## **ATM**: getAliases subroutine

```
**** Test getGeneAliases ****
Got a total of 4 GeneAliases.
Type = BioCarta
Description = Mm.atm
Name = Mm.atm
Type = BioCart.
Description = atm
Name = atm
Type = CGAP
Description = ATM
Name = ATM
Type = CGAP
Description = Atm
Name = Atm
Succeed
Test complete
```







# Please- ask questions!!















# NCICB App Support: tel. 301-451-4384 email <a href="mailto:ncicb@pop.nci.nih.gov">ncicb@pop.nci.nih.gov</a>







# caBlOperl uses Apache OJB to query an Oracle relational database – usually a large, remote database.

#### **GENE**

| gene_id | gene_symbol | chromosome_<br>id |
|---------|-------------|-------------------|
| 41645   | tp53        | 19                |
|         |             |                   |

#### **CHROMOSOME**

| chromosome<br>_id | taxon_i<br>d | chromosome_num<br>ber |
|-------------------|--------------|-----------------------|
| 19                | 5            | 17                    |
|                   |              |                       |





## Object relational bridge

```
<class-descriptor
       class="gov.nih.nci.caBlO.bean.Gene"
       table="GENE"
       initialization-method="initDbCrossRefs">
    <---
      <extent-class class-ref="gov.nih.nci.caBlO.bean.GeneHomolog" />
1
       <field-descriptor
         name="id"
         column="GENE_ID"
         jdbc-type="BIGINT"
         primarykey="true"/>
       <field-descriptor
         name="locusLinkld"
         column="LOCUS LINK ID"
         jdbc-type="VARCHAR"/>
       <field-descriptor
         name="OMIMId"
         column="OMIM_ID"
         idbc-type="VARCHAR"/>
       <field-descriptor
         name="title"
         column="GENE_TITLE"
         jdbc-type="VARCHAR"/>
       <field-descriptor
         name="name"
         column="GENE_SYMBOL"
         jdbc-type="VARCHAR"/>
```





#### **Summary**

- caBlOperl API allows access to WebServices without the need for SOAP wrappers.
- caCORE provides object relational bridge such that searches can be performed with object instantiation.
- Oracle relational database records are represented by Java objects— can be queried with Perl.
- ▶ A range of objects of interest to cancer research-- and relationships between those objects— can be queried.
- App support available 8 AM- 8 PM Eastern time, Monday Friday.







# Please- ask questions!!















### An optional review of the caBIOperl objects will follow.

#### cancer.gov





Home

Organization V

Initiatives Infrastructure

Support

Download

#### NCICB:

#### News

- NCICB User Applications Manual
- caBlOperl released
- caBIG Pilot Structure
- 2003 Jamboree Presentations
- NCICB Seminars
- Publications

#### **Quick Links**

- NCICB Support
- cancer Biomedical Informatics Grid (caBIG)
- · Cancer Genome Anatomy Project
- Cancer Molecular Analysis Project
- · Cancer Models Database
- · Gene Expression Data Portal
- BlOgopher
- · caBIO Quick Start



#### The NCI Center for Bioinformatics

The NCI Center for Bioinformatics (NCICB) provides biomedical informatics support and integration capabilities to the cancer research community. We work with both intramural and extramural groups to develop Initiative-Specific Modules. These modules are connected through intelligent interfaces, coordinated through an NCI Core Module and deployed through open source tools and systems. The NCICB also serves as a focal point for cancer research informatics planning worldwide. We work with research organizations, biomedical informatics groups and standards bodies to facilitate the identification and adoption of information exchange standards, thus connecting research information sources wherever they may reside.



#### Organization

Overview of the NCICB's mission, organization, governance, and strategies for executing its charge.



#### Supported Research Initiatives

Access to the WWW sites and related data, tools, and infrastucture developed by the NCICB to support the collection of NCI research initiatives.



#### Infrastructure

cacORE is the infrastructure backbone supporting data management and application development at NCICB. caCORE includes vocabulary services (EVS), metadata management (caDSR), and biomedical data "objects" (caBIO) implemented in a robust enterprise software architecture. The caCORE Technical Guide provides detailed documentation of the architecture and APIs. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities.

### Thank you for using caBIO!!





## **Appendix**

▶ A survey of some caBIO objects used by caBIOperI





#### caBIOperI objects

- Agent
- Anomaly
- Chromosome
- ClinicalTrialProtocol
- Clone
- CMAPOntology
- Disease
- ExpressionFeature
- **ExpressionMeasurement**
- ExpressionMeasurementArray
- Gene
- GeneAlias
- GeneHomolog
- GoOntology
- Histopathology

- Library
- MapLocation
- Organ
- Pathway
- Protein
- ProteinHomolog
- Protocol
- ProtocolAssociation
- Sequence
- **▶** SNP
- Target
- ▶ Taxon
- Tissue
- Vocabulary





#### **Agent**

- A therapeutic agent (drug, intervention therapy) used in a clinical trial protocol.
- Application: used primarily by CMAP and EVS applications.
- ▶ Related domain objects: ClinicalTrialProtocol, Target





# CABIOOP:agent (oracle table)

| NA         | A | ACENT NAME                     | ACENT COLIDOS              | ACENIT CONNENT                                                              | 0 | NOC MUMPED | EVC ID              |
|------------|---|--------------------------------|----------------------------|-----------------------------------------------------------------------------|---|------------|---------------------|
| <b>⊘</b> A |   | ACENT_NAME                     | AGENT_SOURCE               | AGENT_COMMENT                                                               | U | NSC_NUMBER | EA9 <sup>-</sup> IF |
| •          | 2 |                                | One study in NSCLC has rep |                                                                             | 1 |            |                     |
|            | 3 | 2-Methoxy Estradiol            | EntreMed                   | Inhibition of cellular proliferation, inhibit tubulin function, up-regulate | 1 | 659853     | C965                |
| 100        | 4 | 2B1                            | NCI                        | bispecific murine mAb                                                       | 1 |            | C2399               |
|            | 5 | 2C4                            | Genentech                  | Inhibits HER receptor dimerization                                          | 1 |            | C2193               |
|            | 6 | 5-Aza-2'-deoxycytidine(Decitab | i                          | DNA demethylating/hypomethylating agent                                     | 1 | 127716     | C981                |
|            | 8 | 776C85 (eniluracil)            | Glaxo Wellcome             | Phase II in refractory breast cancer                                        | 1 |            | C1773               |
|            | 9 | 9-cis retinoic acid (Panretin) | NCI                        | Phase I/II study                                                            | 1 | 659772     | C1574               |
| 1          | 0 | ABT-627                        | Abbott Laboratories        | Endothelin A receptor antagonist                                            | 1 | 720763     | C1779               |
| 1          | 1 | ABX-EGF                        | Abgenix/Immunex            | MAb (human)                                                                 | 1 |            | C1857               |
| 1          | 2 | APO2L/TRAIL                    | Genentech/Immunex          | Apoptosis inducing ligand 2 (also called TRAIL); member of TNF              | 1 |            | C1685               |
| 1          | 5 | Anastrozole (Arimidex)         | Zeneca Pharmaceuticals     | Phase III; first line and adjuvant therapy                                  | 1 |            | C1607               |
| 1          | 6 | Angiostatin                    | EntreMed                   | Inhibition of endothelial cell function                                     | 1 |            | C17910              |
| 1          | 7 | Angiozyme                      | Ribozyme Pharmaceuticals   | Ribozyme targeting Flt-1 mRNA                                               | 1 |            | C1865               |
| 1          | 8 | Anti-idiotype MUC-1            |                            | Ken Foon                                                                    | 1 |            | C2709               |
| 100        |   |                                | 0                          |                                                                             |   | 17         |                     |





#### **Anomaly**

- An irregularity in either the expression of a gene or its structure (i.e., a mutation).
- Application: defined and used by the CMAP project.
- Related domain objects: Histopathology, Target





# **CABIOOP:**anomaly

| ◇ ANOMALY_ID | TARGET_ID | ANOMALY_TYPE           | CONTEXT_CODE |
|--------------|-----------|------------------------|--------------|
| <b>&gt;</b>  | 1         | Amplification          | 1            |
| 2            | 2         | Reduced Expression     | 1            |
| 3            | 3         | Deleted                | 2            |
| -2           | 1 4       | Deleted                | 2            |
| Ę            | 5 🛵 5     | Overexpression         | 2            |
|              | 6         |                        | 1            |
| 7            | 7         | Mutation               | 1            |
| 8            | 8         | Amplification/Mutation | 2            |
| 9            | 8         | Expression             | 1            |
| 10           | 8         | Overexpression         | 1            |
| 11           | 9         |                        | 1            |
| 12           | 10        |                        | 1            |
| 13           | 11        |                        | 1            |
| 14           | 1 12      |                        | 1            |
| 15           | 13        | Overexpression         | 2            |
| 16           | 14        | Reduced Expression     | 1            |
| 17           | 15        | Amplified              | 2            |
| 18           | 16        |                        | 1            |
| 19           | 17        | Activated              | 2            |
| 20           | 18        |                        | 1            |





#### Chromosome

- An object representing a specific chromosome for a specific taxon; provides access to all known genes contained in the chromosome and to the taxon.
- Application: used by CMAP and other applications to reason about the molecular basis of cancer.
- Related domain objects: Gene, Taxon





#### **CABIOOP:chromosome**

| CHROMOSOME_ID | TAXON_ID | CHROMOSOME_NUMBER |
|---------------|----------|-------------------|
| 0             | 5        | 8                 |
| 1             | 5        | 4                 |
| 2             | 5        | 19                |
| 3             | 5        | 12                |
| 4             | 5        | 14                |
| 5             | 5        | 18                |
| 6             | 5        | 9                 |
| 7             | 5        | 11                |
| 8             | 5        | 1                 |
| 9             | 5        | 6                 |
| 10            | 5        | 7                 |
| 11            | 5        | ×                 |
| 12            | 5        | 2                 |
| 13            | 5        | 21                |
| 14            | 5        | 3 &               |
| 15            | 5        | 20                |
| 16            | 5        | 16                |
| 17            | 5        | 13                |
| 18            | 5        | 22                |
| 19            | 5        | 17                |
| 20            | 5        | 15                |
| 21            | 5        | 10                |
| 22            | 5        | 5                 |
| 23            | 5        | Y                 |





#### ClinicalTrialProtocol

- The protocol associated with a clinical trial;
- organizes administrative information about the trial
- such as Organization ID, participants, phase, etc.
- provides access to the administered Agents.
- Application: used primarily by CMAP.
- Related domain objects: Agent, ProtocolAssociation





#### PROTOCOLOP: Clinical trial







#### Clone

- An object used to hold information pertaining to I.M.A.G.E. clones; provides access to sequence information, associated trace files, and the clone's library.
- Application: imported from the CGAP web site databases.
- ▶ Related domain objects: Sequence, Library, TraceFile, SNP





# CABIOOP: Clone

|            | CLONE_NAME            | V I | LIBRARY_ID | ٧ | A., | UNIGENE_LIBRARY | C., | C., |
|------------|-----------------------|-----|------------|---|-----|-----------------|-----|-----|
| <b>)</b> 2 | IMAGE:4734378         |     | 17904      |   |     | 6989            |     |     |
| 3          | IMAGE:4767316         |     | 17904      |   |     | 6989            |     |     |
| 4          | GLCFOG07              |     | 18970      |   |     | 5601            |     |     |
| 5          | MAGE:1870937          |     | 54         |   |     | 1079            |     |     |
| 6          | &KCFZH06              |     | 19904      |   |     | 6533            |     |     |
| 7          | IMAGE:4722638         |     | 17904      |   |     | 6989            |     |     |
| 8          | IMAGE:2151449         |     | 1595       | 1 | Αl4 | 1556            |     |     |
| 9          | IMAGE:4712210         |     | 17904      |   |     | 6989            |     |     |
| 10         | IMAGE:4716802         |     | 17904      |   |     | 6989            |     |     |
| 11         | IMAGE:4072143         |     | 17904      |   |     | 6989            |     |     |
| 12         | GLCFOD10              |     | 18970      |   |     | 5601            |     |     |
| 13         | L17N670205n1-41-A0    |     | 29975      |   |     | 12542           |     |     |
| 14         | Ul-H-FG1-bgl-g-02-0-l |     | 27590      |   |     | 11914           |     |     |
| 15         | HSI08034              |     | 23169      |   |     | 8800            |     |     |
| 17         | unknown               |     | 22020      |   |     | 8655            |     |     |
| 19         | L17N670205n1-15-F1:   |     | 29975      |   |     | 12542           |     |     |
| 20         | IMAGE:4722596         |     | 17904      |   |     | 6989            |     |     |
| 21         | IMAGp998I184581I      |     | 54         |   |     | 1079            |     |     |
| 22         | OLOCUETO              |     | 10070      |   |     | ECON            |     |     |





#### **CMAPOntology**

- An object providing entry to the CMAP gene ontology, which categorizes genes by function; provides access to gene objects corresponding to the ontological term, as well as to ancestor and descendant terms in the ontology tree.
- Application: defined and used by CMAP applications.
- ▶ Related domain objects: CMAPOntologyRelationship, Gene





# **CABIOOP: concept**

| CONCEPT_ID | CONCEPT_TYPE_ID | CONCEPT_NAME                   |
|------------|-----------------|--------------------------------|
| 20213      | 1               | BrE-3                          |
| 21401      | 1               | C-MYC Expression/Amplification |
| 20205      | 1               | CD44                           |
| 20204      | 1               | CD7 (3A1-antigen)              |
| 20206      | 1               | CEA                            |
| 20500      | 1               | CELL CYCLE                     |
| 20215      | 1               | CO17-1A                        |
| 21501      | 1               | COX-2                          |
| 20600      | 1               | CYTOPLASMIC PROTEIN KINASES    |
| 20509      | 1               | Cyclin B Overexpression        |
| 20506      | 1               | Cyclin D Overexpression        |
| 20507      | 1               | Cyclin D1/Plcyclin D1/cdk4     |
| 20508      | 1               | Cyclin E Overexpression        |
| 21510      | 1               | DHFR                           |
| 20700      | 1               | DNA INTERACTIVE                |
| 21508      | 1               | DPD                            |
| 20310      | 1               | Death receptors DR4            |
| 20320      | 1               | Death receptors DR5            |
| 21002      | 1               | EGFR Overexpression            |
| 21001      | 1               | EGFR expression                |
| 20410      | 1               | Estrogen Receptor              |
| 21201      | 1               | Estrogen Receptor              |
| 21101      | 1               | Estrogen Receptor              |
| 21505      | 1               | FAP                            |





#### Disease

- Specifies a disease name and ID; also provides access to: ontological relations to other diseases; clinical trial protocols treating the disease; and specific histologies associated with instances of the disease.
- Application: used by the CMAP project.
- Related domain objects: ClinicalTrialProtocol, Histopathology, DiseaseRelationship





#### **ExpressionFeature**

- Associated with a Gene object through the gene's method getExpressionFeature(); provides access to the list of organs where the gene is known to be expressed.
- Application: Expression information for a gene is extracted from the CGAP databases, which are based on the information in Unigene (see discussion of data sources in Chapter 15\_The\_CaBIO\_Data).
- Related domain objects: Organ, Gene.





### **ExpressionMeasurement**

- An object representing a structure that is capable of measuring the absolute or relative amount of a given compound.
- Related domain objects: Gene, Sequence





## **ExpressionMeasurementArray**

- An array of ExpressionMeasurement objects.
- ▶ Related domain objects: Gene, Sequence





#### Gene

- The effective portal to most of the genomic information provided by the caBIO data services;
- organs, diseases, chromosomes, pathways, sequence data, and expression experiments are among the many objects accessible via a gene.
- Related domain objects: ExpressionFeature, Organ, Disease, Chromosome, Taxon, Sequence, GeneAlias, GeneHomolog, MapLocation, Protein, SNP, Target, ExpressionMeasurement, Pathway, GoOntology





# **CABIOOP:**gene

| GENE_ID GENE | GENE_TITLE                                                              | CHROM | TAXON | CLUSTER L | E | LOCUS_LINK_ID | OMIM_IE |
|--------------|-------------------------------------------------------------------------|-------|-------|-----------|---|---------------|---------|
| ▶ 2 NAT2     | N-acetyltransferase 2 (arylamine N-acetyltransferase)                   | 0     | 5     | 2         |   | 10            | 243400  |
| 3 ADH1B      | alcohol dehydrogenase IB (class I), beta polypeptide                    | 12    | 5     | 4         |   | 125           | 103720  |
| 4 CEACAN     | d carcinoembryonic antigen-related cell adhesion molecule 3             | 2     | 5     | 11        |   | 1084          |         |
| 5 CEACAN     | d carcinoembryonic antigen-related cell adhesion molecule 4             | 2     | 5     | 12        |   | 1089          |         |
| 6 ELA2A      | elastase 2A                                                             | 8     | 5     | 21        |   | 63036         |         |
| 7 TGM1       | transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-  | 4     | 5     | 22        |   | 7051          | 190195  |
| 8 LTA        | lymphotoxin alpha (TNF superfamily, member 1)                           | 9     | 5     | 36        |   | 4049          | 153440  |
| 10 CEACAN    | d carcinoembryonic antigen-related cell adhesion molecule 8             | 2     | 5     | 41        |   | 1088          |         |
| 11 PTN       | pleiotrophin (heparin binding growth factor 8, neurite growth-promoting | 10    | 5     | 44        |   | 5764          | 162095  |
| 12 PTAFR     | platelet-activating factor receptor                                     | 8     | 5     | 46        |   | 5724          | 173393  |
| 13 PIGA      | phosphatidylinositol glycan, class A (paroxysmal nocturnal hemoglobi    | 11    | 5     | 51        |   | 5277          | 311770  |
| 14 PRPS1     | phosphoribosyl pyrophosphate synthetase 1                               | 11    | 5     | 56        |   | 5631          | 311850  |
| 15 PTPN12    | protein tyrosine phosphatase, non-receptor type 12                      | 10    | 5     | 62        |   | 5782          | 600079  |
| 16 SDHB      | succinate dehydrogenase complex, subunit B, iron sulfur (lp)            | 0     | 5     | 64        |   | 6390          | 185470  |
| 17 IL1RL1    | interleukin 1 receptor-like 1                                           | 12    | 5     | 66        |   | 9173          | 601203  |
| 18 GABPA     | GA binding protein transcription factor, alpha subunit 60kDa            | 10    | 5     | 78        |   | 2551          | 600609  |
| 19 IL2RG     | interleukin 2 receptor, gamma (severe combined immunodeficiency)        | 11    | 5     | 84        |   | 3561          | 308380  |
| 20 RBL1      | retinoblastoma-like 1 (p107)                                            | 15    | 5     | 87        |   | 5933          | 116957  |
| 21 PMAIP1    | phorbol-12-myristate-13-acetate-induced protein 1                       | 5     | 5     | 96        |   | 5366          | 604959  |
| 22 CYP4F2    | cytochrome P450, family 4, subfamily F, polypeptide 2                   | 2     | 5     | 101       |   | 8529          | 604426  |
| 24 HGFAC     | HGF activator                                                           | 1     | 5     | 104       |   | 3083          | 604552  |
| 25 GRIN1     | glutamate receptor, ionotropic, N-methyl D-aspartate 1                  | 6     | 5     | 105       |   | 2902          | 138249  |
| 26 FGL1      | fibrinogen-like 1                                                       | 0     | 5     | 107       |   | 2267          | 605776  |
| 27 DPEP1     | dipeptidase 1 (renal)                                                   | 16    | 5     | 109       |   | 1800          | 179780  |
| 28 KIAA043   | 6 putative L-type neutral amino acid transporter                        | 12    | 5     | 110       |   | 9581          |         |
| 29 FGF9      | fibroblast growth factor 9 (glia-activating factor)                     | 17    | 5     | 111       |   | 2254          | 600921  |
| 30 PRDX6     | peroxiredoxin 6                                                         | 8     | 5     | 120       |   | 9588          | 602316  |





#### **GeneAlias**

- An alternative name for a gene; provides descriptive information about the gene (as it is known by this alias), as well as access to the Gene object it refers to.
- Related Domain Objects: Gene





## **GeneHomolog**

- Defined only in relation to another Gene object of interest, the functional equivalent of that gene in another taxon (i.e., its ortholog). The GeneHomolog is a specialization of the parent Gene object; in addition to all of the methods provided by the gene interface, the homolog object provides the percent of sequence similarity of the homolog to the related gene of interest.
- Related domain objects: Gene, ExpressionFeature, Organ, Disease, Chromosome, Taxon, Sequence, GeneAlias, GeneHomolog, MapLocation, Protein, SNP, Target, ExpressionMeasurement, Pathway, GoOntology





# **CABIOOP:**gene\_homolog

| <    | GENE_ID | RELATED_GENE | PERCENT_ALIGNMENT |
|------|---------|--------------|-------------------|
|      | 2       | 107445       | 74.83             |
|      | 3       | 106799       | 83.2              |
| 1    | 6       | 114526       | 75.09             |
|      | 7       | 114085       | 91.49             |
|      | 8       | 117163       | 73.27             |
| +  + | 9       | 147957       | 84.2              |
|      | 11      | 145552       | 97.62             |
|      | 12      | 117236       | 81.82             |
| 5    | 14      | 146296       | 100               |
|      | 15      | 133506       | 84.37             |
|      | 16      | 137970       | 92.09             |
|      | 17      | 147125       | 67.39             |
|      | 18      | 108928       | 96.25             |
|      | 20      | 136962       | 90.78             |
|      | 21      | 143580       | 69.39             |
|      | 22      | 108276       | 79.81             |
|      | 24      | 110695       | 81.54             |
|      | 25      | 144952       | 99.04             |
|      | 26      | 144731       | 82.37             |
|      | 27      | 109068       | 72.41             |
|      | 29      | 108073       | 99.03             |
|      | 30      | 126454       | 89.73             |
| 100  | 31      | 107110       | 91.1              |
|      | 32      | 108697       | 77.29             |
|      | 33      | 135381       | 98.3              |
|      | 34      | 106490       | 66.21             |
| 100  | 35      | 140450       | 81.06             |
|      | 38      | 107064       | 78.16             |
| 100  | 20      | 100022       | OC 4E             |





## **GoOntology**

- An object providing entry to a Gene object's position in the Gene Ontology Consortium's controlled vocabularies, as recorded by LocusLink; provides access to Gene objects corresponding to the ontological term, as well as to ancestor and descendant terms in the ontology tree.
- Related domain objects: Gene, GoOntologyRelationship





# **CABIOOP:GoOntology**

| G                                                                         | O_ID | GO_NAME                                                   | HS_GENES | MM_GENES |
|---------------------------------------------------------------------------|------|-----------------------------------------------------------|----------|----------|
|                                                                           | 106  | biotin-apoprotein ligase activity                         | 1        | 1        |
|                                                                           | 107  | imidazoleglycerol phosphate synthase activity             | 0        | 0        |
| 108                                                                       |      | repairosome                                               | 0        | 0        |
|                                                                           | 109  | nucleotide excision repair complex                        | 0        | 0        |
|                                                                           | 110  | nucleotide excision repair factor 1 complex               | 0        | 0        |
|                                                                           | 111  | nucleotide excision repair factor 2 complex               | 0        | 0        |
|                                                                           | 112  | nucleotide excision repair factor 3 complex               | 0        | 0        |
|                                                                           | 113  | nucleotide excision repair factor 4 complex               | 0        | 0        |
|                                                                           | 114  | G1-specific transcription in mitotic cell cycle           | 2        | 0        |
|                                                                           | 115  | S-specific transcription in mitotic cell cycle            | 1        | 0        |
| 117<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125<br>126<br>127 | 116  | G2-specific transcription in mitotic cell cycle           | 0        | 0        |
|                                                                           | 117  | G2/M-specific transcription in mitotic cell cycle         | 0        | 0        |
|                                                                           | 118  | histone deacetylase complex                               | 14       | 10       |
|                                                                           | 119  | mediator complex                                          | 13       | 1        |
|                                                                           | 120  | RNA polymerase I transcription factor complex             | 1        | 0        |
|                                                                           | 121  | glycerol-1-phosphatase activity                           | 0        | 0        |
|                                                                           | 122  | negative regulation of transcription from Pol II promoter | 57       | 42       |
|                                                                           | 123  | histone acetyltransferase complex                         | 0        | 3        |
|                                                                           | 124  | SAGA complex                                              | 0        | 0        |
|                                                                           | 125  | PCAF complex                                              | 0        | 0        |
|                                                                           | 126  | transcription factor TFIIIB complex                       | 1        | 0        |
|                                                                           | 127  | transcription factor TFIIIC complex                       | 5        | 0        |
|                                                                           | 128  | flocculation                                              | 0        | 0        |
|                                                                           | 131  | incipient bud site                                        | 0        | 0        |
|                                                                           | 132  | mitotic spindle orientation                               | 0        | 0        |
|                                                                           | 133  | polarisome                                                | 1        | 1        |
|                                                                           | 134  | site of polarized growth (sensu Saccharomyces)            | 0        | 0        |
| <b>&gt;</b>                                                               | 135  | septin checkpoint                                         | 0        | 0        |
|                                                                           | 136  | mannosyltransferase complex                               | 0        | 0        |
|                                                                           | 137  | Golgi cis cisterna                                        | 1        | 1        |
| -                                                                         | 120  | Colai trans sistems                                       | 2        |          |





# **Histopathology**

- An object representing anatomical changes in a diseased tissue sample associated with an expression experiment; captures the relationship between organ and disease.
- Application: used by the CMAP project.
- Related domain objects: Anomaly, Organ, Disease, ExpressionExperiment, ESTExperiment, SAGEExperiment





## Library

- An object representing a CGAP library; provides access to information about: the tissue sample and its method of preparation, the library protocol that was used, the clones contained in the library, and the sequence information derived from the library.
- Application: Extracted from the CGAP databases.
- Related domain objects: Clone, Sequence, Tissue, Protocol





# **MapLocation**

- Associated with a Gene object, the physical map location of the gene.
- ▶ Related domain objects: Chromosome, Gene, Taxon.





### Organ

- A representation of an organ whose name occurs in a controlled vocabulary; provides access to any Histopathology objects for the organ and, because it is "ontolog-able," provides access to its ancestral and descendant terms in the vocabulary.
- Related domain objects: Histopathology, OrganRelationship





## **Pathway**

- An object representation of a molecular/cellular pathway compiled by BioCarta. Pathways are associated with specific Taxon objects, and contain multiple Gene objects, which may be targets for treatment.
- Related domain objects: Gene, Taxon, TargetTarget.





#### **Protein**

- An object representation of a protein; provides access to the encoding gene via its GenBank ID, the taxon in which this instance of the protein occurs, and references to homologous proteins in other species.
- Related domain objects: Gene, ProteinHomolog,





## **ProteinHomolog**

- Defined only in relation to another Protein object of interest, the functional equivalent of that protein in another taxon (i.e., its ortholog). The ProteinHomolog is a specialization of the parent Protein object; in addition to the methods provided by the parent class, the Homolog object provides the percent of sequence similarity of the homolog to the related protein of interest.
- ▶ Related domain objects: Gene, Protein, Taxon.





#### **Protocol**

- An object representation of the protocol used in assembling a clone library.
- Related domain objects: Library





#### **ProtocolAssociation**

- An association class relating ClinicalTrialProtocols to Diseases.
- Application: used primarily by the CMAP project.
- Related domain objects: ConceptSearch, ClinicalTrialProtocol, Disease





### Sequence

- ▶ An object representation of a gene sequence; provides access to the clones from which it was derived, the ASCII representation of the residues it contains, and the sequence ID.
- ▶ Related domain objects: Clone, Gene, Protein





#### SNP

- A Single Nucleotide Polymorphism; provides access to the clones and trace files from which it was identified, the two most common substitutions at that position, the offset of the SNP in the parent sequence, and a confidence score.
- Application: identified by the GAI project.
- ▶ Related domain objects: Clone, TraceFile





### **Target**

- ▶ A gene thought to be at the root of a disease etiology and targeted for therapeutic intervention.
- Application: defined and used by the CMAP project.
- Related domain objects: Agent, Anomaly, Gene





#### **Taxon**

- An object representing the various names (scientific, common, abbreviated, etc.) for a species associated with a specific Gene, Chromosome, Pathway, Protein, or Tissue object.
- Related domain objects: Gene, Chromosome, Pathway, Protein, Tissue





### **Tissue**

- ▶ A group of similar cells united to perform a specific function.
- ▶ Related domain objects: Disease, Organ, Protocol, Taxon







# Please- ask questions!!















# Thank you for using caBIO!!

#### cancer.gov





Home

Organization Initiatives

itiatives Infrastructure

Support

Download

#### NCICB:

#### News

- NCICB User Applications Manual
- caBlOperl released
- · caBIG Pilot Structure
- 2003 Jamboree Presentations
- NCICB Seminars
- Publications

#### Quick Links

- NCICB Support
- cancer Biomedical Informatics Grid (caBIG)
- · Cancer Genome Anatomy Project
- · Cancer Molecular Analysis Project
- · Cancer Models Database
- Gene Expression Data Portal
- BlOgopher
- · caBIO Quick Start



#### The NCI Center for Bioinformatics

The NCI Center for Bioinformatics (NCICB) provides biomedical informatics support and integration capabilities to the cancer research community. We work with both intramural and extramural groups to develop Initiative-Specific Modules. These modules are connected through intelligent interfaces, coordinated through an NCI Core Module and deployed through open source tools and systems. The NCICB also serves as a focal point for cancer research informatics planning worldwide. We work with research organizations, biomedical informatics groups and standards bodies to facilitate the identification and adoption of information exchange standards, thus connecting research information sources wherever they may reside.



#### Organization

Overview of the NCICB's mission, organization, governance, and strategies for executing its charge.



#### Supported Research Initiatives

Access to the WWW sites and related data, tools, and infrastucture developed by the NCICB to support the collection of NCI research initiatives.



#### Infrastructure

caCORE is the infrastructure backbone supporting data management and application development at NCICB. caCORE includes vocabulary services (EVS), metadata management (caDSR), and biomedical data "objects" (caBIO) implemented in a robust enterprise software architecture. The caCORE Technical Guide provides detailed documentation of the architecture and APIs. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities.



